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ABSTRACT
Recent interest in codifying fairness in Automated Decision Systems
(ADS) has resulted in a wide range of formulations of what it means
for an algorithm to be “fair.” Most of these propositions are inspired
by, but inadequately grounded in, scholarship from political philos-
ophy. This tutorial aims to correct that deficit. We critically evaluate
different definitions of fairness by contrasting their conception in
political philosophy (such as Rawls’s fair equality of opportunity or
formal equality of opportunity) with the proposed codification in
Fair-ML (such as statistical parity, equality of odds, accuracy) to pro-
vide a clearer lens with which to view existing results and to identify
future research directions. A key novelty of this tutorial is the use
of technical artwork to make ideas more relatable and accessible,
based on our ongoing work on a responsible data science comic
book series, available at https://dataresponsibly.github.io/comics/.
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1 INTRODUCTION
Automated Decision Systems (ADS) are broadly used socio-techno-
political systems [19], and codifying ‘fairness’ in the context of
these systems requires a harmonization of scholarship in machine
learning, political philosophy and law. The primary goal of our
tutorial is to ground current approaches in fair machine learning
(fair-ML) in a better understanding of their counterparts in political
philosophy. While most propositions of fair-ML draw on schol-
arship from political and moral philosophy, a critical survey of
literature indicates both a naïve understanding of philosophical
theories and a misunderstanding of their applicability to real-world
contexts. Another dimension of complexity comes from the legal
doctrines that influence the conception of ‘fairness’ definitions that
will hold up against the rule of law. The goal of our tutorial is to
distill the influence from these three fields, helping ground current
and future fair-ML scholarship [6].

A deeper reading of the justice literature in political philosophy
illustrates the limitations of current formulations of fairness in ML.
For example, a popular formulation casts Fairness as Equality of
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Opportunity (EoP) using economists’ models of equality of oppor-
tunity [12]. However, by posing the fairness task as a mapping from
circumstance and effort directly to utility, this formulation bypasses
equality of opportunity to achieve equality of outcomes. We trade
economic conceptions of EOP for philosophical conceptions, set-
ting the stage for a more plausible mapping of statistical fairness
measures onto EOP conceptions. We then consider how political
philosophy can provide normative guidance as to which statistical
notion of fairness is applicable in which context.

Our presentation introduces conceptions of EOP in a philosophi-
cal context. This allows us to identify and organize justice consider-
ations that the fair-ML literature currently overlooks or underem-
phasizes. For example, Rawls supplements his EOP principle with a
principle guaranteeing equal rights and liberties including freedom
of speech and freedom of association. Consider this in the context
of “fair” hiring of people with disabilities: “disability” would be
treated as a protected class and removed from consideration, but
algorithms could still infer disability from other proxy variables. If
social media information is used to infer disability status—for ex-
ample, based on membership in certain social groups or on posting
about disability-related issues—then a scheme that discriminates on
the basis of “inferred” disability would incentivize people against
joining such groups and speaking about such topics. Such algo-
rithms could be fair, but fundamentally unjust: they would violate
a commitment to equal basic rights and liberties such as freedom
of speech, and freedom of association.

We also present a reinterpretation of recent impossibility results,
in light of the highlighted limitations. For example, much of the
recent fair-ML literature has been working to formulate Fairness
as Justice (Libertarian/Rawlsian/Roemerian), but what has actually
been codified is only the EoP principle of Justice. We interpret
recent impossibility results [5, 10, 13] to demonstrate the mutual
incompatibility of Formal and Substantive EoP and argue that fully
satisfying either ideal would be problematic in itself.

We will conclude by using these insights to propose future di-
rections for research in Fair-ML, while calling out the limitations
in the guidance from political philosophy.

A key novelty of this tutorial is the use of technical artwork to
depict ideas and make the content more relatable to the audience.
For example, the comic panel describing the three-headed dragon
of bias is shown in Figure 1. All artwork used in this tutorial is
taken from the upcoming Vol. 2 of the Data, Responsibly comic
books, currently under development by the authors, see https://
dataresponsibly.github.io/comics/.

2 IMPACT
There is a critical lack of guidance from political philosophy in fair-
ML scholarship, and our tutorial is a robust attempt at bridging this
gap. We hope to provide a grounding for future research in fair-ML,
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Figure 1: The three-headed dragon of pre-existing, technical,
and emergent bias.

and in responsible data science more broadly, and to invite scholars
from complementary fields such as law and ethics to continue this
critical dialogue.

Further, with this tutorial we hope to pave the way for new
modes of scholarship beyond the research papers. Mediums such
as technical artwork, graphic guides, and comic books [2–4] are
a rich but underrepresented source of scholarship. We hope to
demonstrate their utility through our tutorial, and to popularize
their adoption more broadly in the ML community.

3 TUTORIAL STRUCTURE
Our 90-minute tutorial will compare notions of fairness and justice
in political philosophy to their counterparts in fair-ML scholarship
and present lessons and future directions for research.
Bias in Algorithmic Systems [10min]. We will motivate the
problem of enforcing ‘fairness’ in the outcomes of Automated De-
cision Systems (ADS) by defining what an ADS is (and is not), and
explaining we mean by bias in the context of ADS [7, 11, 15, 19].
The idea that ADS are socio-techno-political systems will be a com-
mon thread across the tutorial, motivating scholars to think deeply
about how to ground fair-ML scholarship in political philosophy
and in the social sciences.
Fairness and Equality of Opportunity [25min]. Equality of
opportunity [EOP] is a helpful frame for understanding fair-ML.
However, fair-ML literature has not yet established philosophically
grounded and intuitively compelling connections between differ-
ent EOP views and different fairness concerns. Toward this end,
we introduce versions of EOP and the philosophical views that
ground them: Libertarianism, Formal Equality of Opportunity, and
Substantive Equality of Opportunity (Rawlsian and Luck Egalitar-
ian) [1, 17, 18, 21]. We distinguish between equality of developmen-
tal opportunities, EOP over a lifetime, and EOP at a decision point
(fair-ML’s focus) to make better sense of substantive EOP [9]. We
also introduce philosophically well-known objections to achieving
EOP. This section focuses on clarifying and providing context for
philosophical ideas that are already influential in ML scholarship.
Fairness Definitions in Machine Learning [15min]. We will
present a critical review of the definitions of ‘fairness’ that have
been proposed in ML [5, 8, 12, 20]. Throughout, concepts will be

presented using light and relatable artwork to make the tutorial
more accessible to people of different backgrounds and technical
abilities.
Fair But Not Just and Other Limitations [20min]. The exposi-
tion of fairness notions from political philosophy and fair-ML will
be followed by a critical discussion on gaps between philosophical
theories, their technical codification, and legal doctrines. With the
grounding provided in the preceding section, we will also highlight
the source of this lapse, including a naïve application of the under-
lying theory, an imprecise technical definition, lack of guidance in
political philosophy, or incompatibility with legal doctrines. We
will use practical examples to demonstrate the harm of reductive
formulations including the infamous COMPAS tool, and its (less
well known) ‘COMPASWomen’ and ‘COMPAS Youth’ counterparts.
Another practical example is the impact of hiring ADS on people
with disabilities, where we will demonstrate the perils of current
formulations that would give rise to decisions that are at the same
time ‘fair’ (i.e., they satisfy some parity conditions) and but ‘unjust’
(i.e., they infringe on the basic rights and liberties of applicants).
Reinterpreting Impossibility Results [10min]. There is much
fair-ML scholarship on the mutual incompatibility of fairness mea-
sures [5, 10, 13, 14, 16? ]. We will interpret this incompatibility in
terms of the conflict between formal EOP and substantive EOP,
which also pull mutually incompatible directions. We propose a
reinterpretation of the recent impossibility results as evidence of
the limitations discussed in the preceding section.
Lessons and Proposed Directions for Research [10min]. We
conclude with an overview of ‘fairness’ in different philosophical
views and legal doctrines, and highlight open areas for future work.
We underscore that entire areas and formulations such as devel-
opmental EoP seem to be overlooked in favor of discrete point
interpretations (i.e., results of a competition view) in fair-ML. Fur-
ther, we will stress that reductive formulations can arise due to
a misinterpretation or naïve reading of political philosophy doc-
trines that emboldens their application in spheres in which theory
provides little to no guidance.
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